A note on positive non - oscillatory solutions of the difference equation xn 1 1 5 a 1 xp n 2 k x

نویسنده

  • STEVO STEVIĆ
چکیده

where a . 21, p . 0 and k [ N is fixed, has positive non-oscillatory solutions which converge to the positive equilibrium x 1⁄4 aþ 1: This result solves Open Problem 1 in Stević, 2005, On the recursive sequence xnþ1 1⁄4 aþ ðxpn21=xnÞ; Journal of Applied Mathematics and Computing 18(1–2), 229–234, as well as, Open Problem 1 in DeVault, Kent and Kosmala, 2003, On the recursive sequence xnþ1 1⁄4 pþ ðxn2k=xnÞ; Journal of Difference Equations and Application, 9(8), 721–730. It is interesting that the method described here can, in some cases, be applied also when the parameter a is variable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global asymptotic behavior and boundedness of positive solutions to an odd-order rational difference equation

In this note we consider the following high-order rational difference equation xn = 1+ k ∏ i=1 (1− xn−i ) k ∑ i=1 xn−i , n = 0, 1, . . . , where k ≥ 3 is odd number, x−k , x−k+1, x−k+2, . . . , x−1 is positive numbers. We obtain the boundedness of positive solutions for the above equation, and with the perturbation of initial values, we mainly use the transformation method to prove that the pos...

متن کامل

Oscillatory and Asymptotic Behavior of Fourth order Quasilinear Difference Equations

where ∆ is the forward difference operator defined by ∆xn = xn+1 −xn, α and β are positive constants, {pn} and {qn} are positive real sequences defined for all n ∈ N(n0) = {n0, n0 + 1, ...}, and n0 a nonnegative integer. By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all n ∈ N(n0). If any four consecutive values of {xn} are given, then a solution {xn...

متن کامل

Existence of Non-oscillatory Solutions for a Higher-order Nonlinear Neutral Difference Equation

This article concerns the solvability of the higher-order nonlinear neutral delay difference equation ∆ “ akn . . .∆ ` a2n∆(a1n∆(xn + bnxn−d)) ́” + s X j=1 pjnfj(xn−rjn ) = qn, where n ≥ n0 ≥ 0, d, k, j, s are positive integers, fj : R → R and xfj(x) ≥ 0 for x 6= 0. Sufficient conditions for the existence of non-oscillatory solutions are established by using Krasnoselskii fixed point theorem. Fi...

متن کامل

The Pell Equation x 2 − ( k 2 − k ) y 2 = 2 t Ahmet

Let k, t, d be arbitrary integers with k ≥ 2, t ≥ 0 and d = k − k. In the first section we give some preliminaries from Pell equations x − dy = 1 and x − dy = N , where N be any fixed positive integer. In the second section, we consider the integer solutions of Pell equations x − dy = 1 and x − dy = 2. We give a method for the solutions of these equations. Further we derive recurrence relations...

متن کامل

The Pell Equation x 2 − ( k 2 − k ) y 2 = 2 t

Let k, t, d be arbitrary integers with k ≥ 2, t ≥ 0 and d = k − k. In the first section we give some preliminaries from Pell equations x − dy = 1 and x − dy = N , where N be any fixed positive integer. In the second section, we consider the integer solutions of Pell equations x − dy = 1 and x − dy = 2. We give a method for the solutions of these equations. Further we derive recurrence relations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005